István Szatmári, Loránd Kiss and Ferenc Fülöp*

Institute of Pharmaceutical Chemistry, University of Szeged, H-6701 Szeged, POB 427 Hungary
e-mail: fulop@pharm.u-szeged.hu
Received December 28, 2005

A straightforward synthesis of orthogonally N^{α} / N^{\prime}-protected trans- and cis-4-aminopipecolic acid is reported, starting from methyl cis-4-hydroxypiperidine-2-carboxylate. The two diastereomers were synthesized with the aid of C-4 inversion (the trans isomer) or double C-4 inversion (the cis isomer).
J. Heterocyclic Chem., 43, 1387 (2006).

Introduction

The incorporation of conformationally constrained amino acids into peptides is a powerful approach for the generation of structurally defined peptides as conformational probes and bioactive agents [1].

Pipecolic acid derivatives bearing amino functionalities at position C-4 are examples of endocyclic- $N^{\alpha} /$ exocyclicN^{γ} basic constrained amino acids. Pipecolic acid substituted with an amino group at position $\mathrm{C}-4$ is a naturally occurring non-proteinogenic α-amino acid found in some plants: 4-aminopipecolic acid is present in the leaves of Strophantus scandens (Apocinaceae) [2-4] and ($2 S, 4 S$)-4-acetylaminopipecolic acid has been isolated from the leaves of Calliandra hamatocephala (Leguminosae) [5].
None of the earlier syntheses of 4-aminopipecolic acid derivatives seemed suitable for the preparation of orthogonally protected compounds [6-8]. Machetti et. al. published a simple method for the preparation of protected trans-4-aminopipecolic acid starting from methyl cis-4-hydroxypiperidine-2-carboxylate [9]. Our present aim was to develop a method suitable for the synthesis of both diastereomers of 4-aminopipecolic acid in the frame of an ongoing industrial research project.

Results and Discussion.
For the synthesis of the diastereomers of protected 4aminopipecolic acid derivatives 8 and 13, methyl cis-4-hydroxypiperidine-2-carboxylate (2) was used as starting material. The known synthetic pathway was applied to obtain 2 from 4-bromo-1-butene (1, Scheme I) [10-12].

Our synthetic route began from 2-methyl cis-1-benzyloxycarbonyl-4-hydroxypiperidine-2-carboxylate (3). We started by treating the cis alcohol with methane-

Scheme I

(a) Z-Cl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 20 \mathrm{~h}$, rt., 93\%; (b) MsCl, DMAP, Py, 14 h, rt., 95%;
(c) $\mathrm{NaN}_{3}, \mathrm{DMF}, 16 \mathrm{~h}, 70^{\circ} \mathrm{C}, 85 \%$; (d) $\mathrm{PPh}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 2$ days, rt., 75%;
(e) $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 10 \mathrm{~h}, \mathrm{rt} ., 85 \%$; (f) NaOH , dioxane $/ \mathrm{H}_{2} \mathrm{O}, 3$ days, rt., 70%
sulfonyl chloride in pyridine to afford compound $\mathbf{4}$, which was reacted without further purification with sodium azide to obtain the azido compound 5 with C-4 inversion. Reduction of 5 with triphenylphosphine in THF/ $\mathrm{H}_{2} \mathrm{O}$ gave the 4 -aminopipecolic acid methyl ester (6). The amino function at position 4 was then protected with a tertbutoxycarbonyl group (7). Hydrolysis of methyl ester 7
with sodium hydroxide gave the desired orthogonally protected trans-4-aminopipecolic acid 8 (Scheme I).

The strategy for the preparation of the cis-4-aminopipecolic acid isomer was based on the double inversion of the configuration at C-4. The first inversion was carried out by substitution of the mesylate $\mathbf{4}$ with lithium bromide to give bromo compound $\mathbf{9}$, and the second one involved the treatment of 9 with sodium azide, which led to azido compound $\mathbf{1 0}$ with a further inversion at $\mathrm{C}-4$. The azido group could then be reduced with triphenylphosphine in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ to give the diamino ester 11. The desired orthogonally protected cis-4-aminopipecolic acid (13, Scheme II) was obtained by protection of the amino function at position 4 with a tert-butoxycarbonyl group (12), followed by hydrolysis of the ester group under alkaline conditions.

(a) LiBr, DMF, 2 days, $70^{\circ} \mathrm{C}, 65 \%$; (b) $\mathrm{NaN}_{3}, \mathrm{DMF}, 3$ days, $70^{\circ} \mathrm{C}, 70 \%$; (c) $\mathrm{PPh}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 2$ days, $60^{\circ} \mathrm{C}, 65 \%$; (d) (Boc$)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$, $10 \mathrm{~h}, \mathrm{rt} ., 90 \%$; (e) NaOH , dioxane $/ \mathrm{H}_{2} \mathrm{O}, 3$ days, rt., 60%

In conclusion, a simple and efficient method has been developed for the synthesis of both diastereomers of 4aminopipecolic acid from methyl cis-4-hydroxypiper-idine-2-carboxylate. The trans isomer was synthesized via an inversion at C-4, and the cis isomer through double inversion at C-4.

EXPERIMENTAL

Melting points were determined on a Kofler micro melting point apparatus and were not corrected. Compounds 2 and $\mathbf{3}$ were prepared according to the literature procedure [10-12].

2-Methyl cis-1-benzyloxycarbonyl-4-[(methylsulfonyl)oxy]-piperidine-2-carboxylate (4).

To a solution of $\mathbf{3}(17.58 \mathrm{~g}, 60 \mathrm{mmol})$ in dry pyridine (400 mL), methanesulfonyl chloride ($13.67 \mathrm{~g}, 120 \mathrm{mmol}$) and 200 mg

DMAP were added. The resulting mixture was stirred at room temperature for $14 \mathrm{~h} .18 \% \mathrm{HCl}$ was then added dropwise at $0^{\circ} \mathrm{C}$ until pH 3, and the mixture was extracted with EtOAc (3 x 250 mL). The combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated.

The oily product was used in the next step without further purification; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta: 1.64-2.10(3 \mathrm{H}, \mathrm{m})$; $2.72(1 \mathrm{H}, \mathrm{t}, J=14.1 \mathrm{~Hz}) ; 2.98(3 \mathrm{H}, \mathrm{s}) ; 3.49(1 \mathrm{H}, \mathrm{t}, J=13.1 \mathrm{~Hz})$; 3.66-3.80 (3H, m); 3.99-4,20 ($2 \mathrm{H}, \mathrm{m}$); 5.06 ($1 \mathrm{H}, \mathrm{s}$); 5.12-5.21 ($2 \mathrm{H}, \mathrm{m}$); 7.32-7.42 (5H, m)

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{7} \mathrm{~S}: \mathrm{C}, 51.74 ; \mathrm{H}, 5.70 ; \mathrm{N}, 3.77$. Found: C, 51.82; H, 5.72; N, 3.72.

2-Methyl trans-1-benzyloxycarbonyl-4-azidopiperidine-2carboxylate (5).
The mesyl compound $4(6.31 \mathrm{~g}, 17 \mathrm{mmol})$ and sodium azide ($3.25 \mathrm{~g}, 50 \mathrm{mmol}$) were dissolved in DMF (100 mL). After stirring for 16 h at $70{ }^{\circ} \mathrm{C}$, water (500 mL) was added to the mixture, which was then extracted with EtOAc ($3 \times 120 \mathrm{~mL}$). The combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated; Yield: 85%; a colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.40-1.57(1 \mathrm{H}, \mathrm{m}) ; 1.59-1.75(1 \mathrm{H}, \mathrm{m})$; 1.91-2.06 ($1 \mathrm{H}, \mathrm{m}$); $2.48(1 \mathrm{H}, \mathrm{t}, J=12.6 \mathrm{~Hz}) ; 3.12(1 \mathrm{H}, \mathrm{t}, J=$ $12.6 \mathrm{~Hz}) ; 3.30-3.41(1 \mathrm{H}, \mathrm{m}) ; 3.64-3.81(3 \mathrm{H}, \mathrm{m}) ; 4.10-4.30(1 \mathrm{H}$, m); 5.04-5.24 (3H, m); 7.23-7.46 (5H, m).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $56.60 ; \mathrm{H}, 5.70 ; \mathrm{N}, 17.60$. Found: C, 56.82; H, 5.72; N, 17.65.

2-Methyl trans-1-benzyloxycarbonyl-4-aminopiperidine-2carboxylate (6).

The azido compound 5 ($4.14 \mathrm{~g}, 13 \mathrm{mmol}$) and triphenylphosphine ($5.24 \mathrm{~g}, 20 \mathrm{mmol}$) were dissolved in THF (150 mL) and water (10 mL). After stirring for 48 h , the mixture was concentrated and chromatographed over silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ 9:1); Yield: 75%; a colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ : 1.17-1.36 ($2 \mathrm{H}, \mathrm{m}$); 1.73-1.89 ($1 \mathrm{H}, \mathrm{m}$); $2.36(1 \mathrm{H}, \mathrm{t}, J=16.1 \mathrm{~Hz}$); 2.68-2.79 ($1 \mathrm{H}, \mathrm{m}$); 2.97-3.18 ($1 \mathrm{H}, \mathrm{m}$); 3.65-3.79 (3H, m); 4.05$4.24(1 \mathrm{H}, \mathrm{m}) ; 4.89-5.20(3 \mathrm{H}, \mathrm{m}) ; 7.28-7.41(5 \mathrm{H}, \mathrm{m})$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 61.63 ; \mathrm{H}, 6.90 ; \mathrm{N}, 9.58$. Found: C, 61.71; H, 6.87; N, 9.61.

2-Methyl trans-1-benzyloxycarbonyl-4-[(tert-butoxycarbonyl)-amino]piperidine-2-carboxylate (7).

To a solution of amino compound $6(2.63 \mathrm{~g}, 9 \mathrm{mmol})$ and triethylamine (3 mL) in THF (80 mL), di-tert-butyl dicarbonate $(2.61 \mathrm{~g}, 12 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After stirring for 10 h , the mixture was taken up in EtOAc (200 mL), washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated; Yield: 85%; a colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.44-1.49(11 \mathrm{H}, \mathrm{m}) ; 1.94-2.04$ $(1 \mathrm{H}, \mathrm{m}) ; 2.43-2.58(1 \mathrm{H}, \mathrm{m}) ; 3.03-3.24(1 \mathrm{H}, \mathrm{m}) ; 3.67-3.75(3 \mathrm{H}$, $\mathrm{m})$; 4.09-4.27 ($2 \mathrm{H}, \mathrm{m}$); 4.88-5.22 (3H, m); 7.31-7.43 (5H, m).
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}, 61.21 ; \mathrm{H}, 7.19 ; \mathrm{N}, 7.14$. Found: C, 61.31; H, 7.15; N, 7.19.
trans-1-Benzyloxycarbonyl-4-[(tert-butoxycarbonyl)amino]-piperidine-2-carboxylic acid (8).

To a solution of amino ester $7(2.35 \mathrm{~g}, 6 \mathrm{mmol})$ in dioxane $(70 \mathrm{~mL}) \mathrm{NaOH}(1.12 \mathrm{~g}, 48 \mathrm{mmol})$ in water $(70 \mathrm{~mL})$, was added. After stirring for 3 days, $10 \% \mathrm{HCl}$ was added at $0{ }^{\circ} \mathrm{C}$ until pH 5 . The mixture was then extracted with $\mathrm{CHCl}_{3}(3 \times 120 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated
under reduced pressure. The crude product was crystallized from n-hexane (50 mL); Yield: 70%; a white solid; $\mathrm{mp} 170-172^{\circ} \mathrm{C}$; ${ }^{1} H-N M R$ ($400 \mathrm{MHz}, ~ D M S O$): $\delta 1.20-1.44$ ($10 \mathrm{H}, \mathrm{m}$); 1.45-1.60 $(1 \mathrm{H}, \mathrm{m}) ; 1.78(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}) ; 2.23(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz})$; 2.94-3.12 (1 H, om); 3.24-3.35 ($1 \mathrm{H}, \mathrm{m}$); $3.97(1 \mathrm{H}, \mathrm{d}, J=11.1$ $\mathrm{Hz}) ; 4.77(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}) ; 5.11(2 \mathrm{H}, \mathrm{s}) ; 6.58(1 \mathrm{H}, \mathrm{bs}) ; 7.31-$ 7.37 ($5 \mathrm{H}, \mathrm{m}$); 12.12-13.43 ($1 \mathrm{H}, \mathrm{bs}$).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, $60.30 ; \mathrm{H}, 6.93 ; \mathrm{N}, 7.40$. Found: C, 60.39; H, 6.90; S, 7.37.

2-Methyl trans-1-benzyloxycarbonyl-4-bromopiperidine-2carboxylate (9).
To a solution of mesyl compound $4(12.63 \mathrm{~g}, 34 \mathrm{mmol})$ in DMF, LiBr was added ($4.43 \mathrm{~g}, 51 \mathrm{mmol}$). The mixture was stirred for 2 days at $70^{\circ} \mathrm{C}$, then taken up in EtOAc (200 mL), washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated; Yield: 65%; a colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.62-2.09$ (5H, m); 2.32-2.40 (1H, m); 3.66-3.81 (4H, m); 4.20-4.26 (1H, $\mathrm{m})$; 5.11-5.23 (2H, m); 7.32-7.42 (5H, m).
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrNO}_{4}$: C, 50.58 ; H, 5.09; N, 3.93. Found: C, 50.62; H, 5.11; N, 3.88.

2-Methyl cis-1-benzyloxycarbonyl-4-azidopiperidine-2-carboxylate (10).

Bromide derivative 9 ($7.12 \mathrm{~g}, 20 \mathrm{mmol}$) and sodium azide ($3.57 \mathrm{~g}, 55 \mathrm{mmol}$) were dissolved in DMF (100 mL). After stirring for 3 days at $70^{\circ} \mathrm{C}$, water (500 mL) was added to the mixture, which was then extracted with EtOAc ($3 \times 150 \mathrm{~mL}$). The combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated; Yield: 70%; a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta: 1.58-2.30(6 \mathrm{H}, \mathrm{m}) ; 3.62-3.81(4 \mathrm{H}$, $\mathrm{m}) ; ~ 4.10-4.33(1 \mathrm{H}, \mathrm{m}) ; 5.07-5.26(2 \mathrm{H}, \mathrm{m}) ; 7.28-7.44(5 \mathrm{H}, \mathrm{m})$.
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $56.60 ; \mathrm{H}, 5.70 ; \mathrm{N}, 17.60$. Found: C, 56.55; H, 5.68; N, 17.62.

2-Methyl cis-1-benzyloxycarbonyl-4-aminopiperidine-1,2-carboxylate (11).

The azido compound $\mathbf{1 0}(4.14 \mathrm{~g}, 13 \mathrm{mmol})$ and triphenylphosphine ($5.24 \mathrm{~g}, 20 \mathrm{mmol}$) were dissolved in THF (150 mL) and water $(10 \mathrm{~mL})$. After stirring for 2 days at $60^{\circ} \mathrm{C}$, the mixture was concentrated and chromatographed over silica gel ($\mathrm{CHCl}_{3}-\mathrm{MeOH} 9: 1$); Yield: 65%; a colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.60-2.01(5 \mathrm{~h}, \mathrm{~m}) ; 2.11-2.29(1 \mathrm{H}, \mathrm{m}) ; 3.31-3.37$ $(1 \mathrm{H}, \mathrm{m}) ; 3.60-3.94(4 \mathrm{H}, \mathrm{m}) ; 4.69(1 \mathrm{H}, \mathrm{s}) ; 5.05-5.26(2 \mathrm{H}, \mathrm{m})$; 7.28-7.34 (5H, m).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $61.63 ; \mathrm{H}, 6.90 ; \mathrm{N}, 9.58$. Found: C, 61.65; H, 6.91; N, 9.53.

2-Methyl cis-1-benzyloxycarbonyl-4-[(tert-butoxycarbonyl)-amino]piperidine-2-carboxylate (12).

To a solution of amino compound $\mathbf{1 1}(2.34 \mathrm{~g}, 8 \mathrm{mmol})$ and triethylamine (3 mL) in THF (80 mL), di-tert-butyl dicarbonate ($2.62 \mathrm{~g}, 12 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$. After stirring for 10 h , the mixture was taken up in EtOAc (200 mL), washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated; Yield: 90%; a colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.39-1.45$ ($10 \mathrm{H}, \mathrm{m}$); 1.69-1.96 $(3 \mathrm{H}, \mathrm{m}) ; 2.44-2.54(1 \mathrm{H}, \mathrm{m}) ; 3.72(3 \mathrm{H}, \mathrm{s}) ; 3.81-4.18(3 \mathrm{H}, \mathrm{m})$; 5.12-5.20 (2H, m); 7.31-7.42 (5H, m)

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, $61.21 ; \mathrm{H}, 7.19 ; \mathrm{N}, 7.14$. Found: C, 61.28; H, 7.20; N, 7.11.
cis-1-Benzyloxycarbonyl-4-[(tert-butoxycarbonyl)amino]piperi-dine-2-carboxylic acid (13).

To a solution of amino ester $\mathbf{1 2}(2.36 \mathrm{~g}, 6 \mathrm{mmol})$ in dioxane $(70 \mathrm{~mL}) \mathrm{NaOH}(1.92 \mathrm{~g}, 48 \mathrm{mmol})$ in water $(70 \mathrm{~mL})$, was added. After stirring for 4 days $10 \% \mathrm{HCl}$ was added at $0{ }^{\circ} \mathrm{C}$ until pH 5 . The mixture was then extracted with $\mathrm{CHCl}_{3}(3 \times 120 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude product was crystallized from n-hexane (50 mL); Yield: 60%; a white solid; $\mathrm{mp} 138-140^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{DMSO}$): δ 0.83-0.91 ($1 \mathrm{H}, \mathrm{m}$); 1.24-1.54 $(11 \mathrm{H}, \mathrm{m}) ; 1.64-1.82(2 \mathrm{H}, \mathrm{m}) ; 2.15(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}) ; 3.64$ $(1 \mathrm{H}, \mathrm{s}) ; 3.73(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}) ; 4.33(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz})$; 5.03-5.09 ($2 \mathrm{H}, \mathrm{m}$); $7.16(1 \mathrm{H}, \mathrm{bs}) ; 7.26-7.44(5 \mathrm{H}, \mathrm{m})$.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}, 60.30 ; \mathrm{H}, 6.93 ; \mathrm{N}, 7.40$. Found: C, 60.22; H, 6.95; N, 7.44.

REFERENCES

[1] D. Mendel, J. Ellman and P. G. Schultz, J. Am. Chem. Soc., 115, 4359 (1993).
[2] W. Schenk and H. R. Schütte, Naturwissenschaften, 48, 223 (1961).
[3] W. Schenk and H. R. Schütte, Flora, 153, 426 (1963).
[4] W. Schenk, H. R. Schütte and K. Mothes, Flora, 152, 590 (1962).
[5] M. Marlier, G. Dardenne and J. Casimir, Phytochemistry, 18, 479 (1979).
[6] M. Y. H. Essawi and P. S. Portoghese, J. Med. Chem., 26, 348 (1983).
[7] F. P. J. T. Rutjes, J. J. N. Veerman, W. N. Meester, H. Hiemstra and H. E. Schoemaker, Eur. J. Org. Chem., 1127 (1999).
[8] C. Agami, F. Couty, M. Poursoulis and J. Vaissermann, Tetrahedron, 48, 431 (1992).
[9] F. Machetti, F. M. Cordero, F. De Sarlo, A. M. Papini, M. C. Alcaro and A. Brandi, Eur. J. Org. Chem., 2928 (2004)
[10] S. F. McCann and L. E. Overman, J. Am. Chem. Soc., 109, 6107 (1987)
[11] S. J. Hays, T. C. Malone and G. Johnson, J. Org. Chem., 56, 4084 (1991)
[12] J. Gillard, A. Abraham, P. C. Anderson, P. L. Beaulieu, T. Bogri, Y. Bousquet, L. Grenier, I. Guse and P. Lavallée, J. Org. Chem., 61, 2226 (1996)

